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Abstract.

Résumé.

It is not possible to separate the selection of model structure from the determination of
the model parameters in the construction of a mathematical rainfall runoff model .
designed for use in hydrological forecasting and calculations. E
A complex model structure allows widely different runoff conditions to be describeg:
and is more relizble in the cases which have not been used for the model calibration
(parameter determination). However, due to the lack of sufficient data this results{
estimated parameters of reduced accuracy. On the other hand, for the purposes of
parameter determination, it is desirable to obtain a model of minimum complexity?il
in such a model if the diversity of the runoff conditions is neglected the parameter g

estimates will be unstable.

Obviously, the model of optimum complexity can be obtained only by accounting
for the diverse runoff formation conditions and by considering the data available o
each specific catchment. Therefore, it is more reasonable to speak not about the
construction of the runoff formation model in general but about the runoff formatic
model for a specific catchment. Consequently
structure from which an individual structure could be singled out for each specifi
catchment. The object of hydrological theory is to narrow, as far as possible, the
class to which the general model structure is assigned. ) :

The seazch for such a narrow class of models has resulted in the model where th
 runoff is considered as a dynamic system with lumped parameters. This direction

to be the most fruitful if one considers the available data and the basic hydrologi
problems where, as a rule, it is required merely to calculate a hydrograph at the
outlet (without detailing the water regime of the catchment proper). However,
consideration of the particular catchment as a system with lumped parameters mak
it difficult to use physical laws and relations which are known from experimental
hydrology. Model construction is often empirical: a search is made for a system
ordinary differential equations or any corresponding operator which matches th
measured hydrometeorological effects on the catchment (input values) with thei
corresponding runoff-ydrographs (‘black box’ method). Such models can yield g8
results for many problems though their physical interpretation is rather difficult:
manifests itself especially when passing to catchments on which there are insuffi¢

data available.

The transfer from the rainfall runoff model on an elementary plot to the mode]
describing the rainfall runoff formation in the catchment is achieved by theoretical probability
averaging. An optimization method is applied to determine the model parameters. The mode]
is tested on the observed data of a few small catchments.

On utilise les méthodes probabilistes de calcul des moyennes pour réalisez le Passage
du modsle de formation de 'écoulement des pluies sur une surface élémentaire au modele déerivag
la formation de ’écoulement des pluies sur le bassin. Pouf déterminer les parametres du modile
on utilise les méthodes d’optimisation avec complexisation altéreure du modeéle. Le modele est *
verifie d’aprés diverses observation sur plusieurs bassins peu étendus. -
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One way of constructing physically and experim
jormation w%th.lumped parameters is based orlx3 the tiggilflgr%?eigzgi{st ° mﬂoff
from 2 descrlphqn of the processes occurring on an elementaryp lot t1 1 )(’iavefﬂg{ng
of the processes in the catchment. Such an approach has alreag b o applios to
«onstruction of the snowmelt runoff formation (Komarov 1959¥P e,
[t is noW used to construct a model of the rainfall—runoff’f ton, 19'63).

The water yield rate of elementary plot 7 is ermation-

qi(t) = Pi(t) = Ei(t) — I(t) (

- 1)
Jhere Pi(t) is the precipitation rate, £(¢) is the ev i i
e f aporation rate, and /() is the

The evaporation and infiltration rates can be determined from the followin
g

elations (assuming that the calculated time interval i
d of infiltration rate): rval is great compared to the recession

prio
k14 &k, Us i i i _
E() = [ 2UDIDI(E) i di < Wy
0 if di> Wy, - @
1o = ' + I it Pi)— Ei() > I(t)
Pi(r) — Ei(1) if  Py(r)— Ed() <Ii(t) ©

- where

4, ky, kyand i iri i

Q,::u:e c;tc h(Jin g Izlltr,e empirical parameters which are assumed to be constant for the
(1) is the wind velocity;

 Dit) is the air moisture deficit;

| Wy, is the maximum soil moisture storage capacity;

Is the soil moisture deficit. PR

- The mathematical water yi
er : .
il to: yield rate of the entire catchment is expected to be

Mlq) = M[P)—MIE]— Ml (4)

e M{P], M[E] and M i i
m“onﬂiné ir]lﬁltratio[;f1 ]rz;rtz St’hree :;Zz};;rziltlcal expectations-of the precipitation,

me . . :

” deﬁ;ttt;ledm\:itr:l:;ma;tlcgl e)fpectatlon of the input values (precipitation, air

Bof the o 0 VZ ocity) is equal to their mean values obtained on the ——

capacttis o ?h:. fsﬁrr:lle also that 'the. distribution of the maximum moisture
i catchment area (dl.stnbution of relative areas with different

re storage values) can be written as an exponential relation

k is a distr .- » _
A St(miztenbuﬁop'par_aLmeter. If the mathematical expectation of the maximum
: cqumioga(ﬁ’sgw}tt{es is M[Wy,] it is easy to show that k = M [Wp,]
: it is possible to find th i "
deficit does not eI))(ceed Win: ind the probability that at each point the soil

a (W) AW exp( M[Wm]) (6)
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If the soil moisture deficit throughout the catchment area is assumed to be'equ
to its mathematical expectation M[d] the mathematical expectation of evaporatigy™
can be found by the relation:

M[d] )

MIE) = U MID) + ko MIDIMO + Koo' exp (= 1o o

where Kpy is the covariance between air moisture and wind velocity.
Taking the mathematical expectation in equation (3) gives

M = [M[d] + z‘o] L;ﬂ £(P—E) d(P—E)_

k3

[

M)
+M [P—E]j0 fH(P—E) d(P—E) - |
where f5(P—E) is the probability distribution of (P—E). -
Since the evaporation during precipitation is negligible we can take f,(P—E) =f2(’l'
in equation (8). Distribution of f;(P) can be considered to be normal. S
If the calculation is started from a certain time when the moisture deficit can be
considered to equal zero, then - ’

; |
Mld] = M[Ws] = | (MIE) + MTQ)+ MU =~ M)} &r ol

where @ is the runoff relative depth. e
In order to pass from the water yield to the surface runoff, introduce the A
distribution of the active catchment area. Assume that plot r of the area is undrdined
and the increment of active catchment area is proportional to the surface runoff depl,
Then, the surface runoff is: '

q,(t) = Mlqlr [1 — exp (—mJ;M[Q] dr)]

where » and m are empirical parameters.
The subsurface runoff can be taken into account by the formula

qr(6) = iyexp (—kaM[d])

where k, is an empirical parameter. , :
Using the linear model to route the surface and subsurface runoff gives

t t
o) = jo Pu(t — ) qy(r) dr + L Pot — D7) dr

where P;(¢) and P(¢) are transfer functions.

As practice shows [the use of Kalinin—Milyukov’s method (1958) and Nash’s
model (1960)] the transfer function may be approximated by the gamma distrib
therefore it is possible to take :

(i)ni;l exp (— é/Ti)

Ti

i=1,2)
i0(n;) ,
where T;, n; are empirical parameters.
The described model has been taken as the basis for constructing the mode
runoff formation in several catchments of areas up to 15,000 km? The model $
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, wmplicated as well. For
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methods were used for more complicated models. The application of optimization
the parameters of the runoff models shows that the rate of -

¥ coovergence of the parameters to their optimum values depends strongly on the initial

2 more accurate account o
of infiltration (parameter i), account of subsurface runoff (parameters ks, T2,
a more accurate account of evaporation (parameter k»). The model
s continually complicated as long as a noticeable improvement was observed in the
cement between the actual and calculated hydrographs both for the flood events
brate the model and for the flood events used as controls. To illustrate the
rocedure of making the mode
drograph and hydrographs obtained with the aid of models of different
del is complicated the determination of the parameters is
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y including new elementary processes and parameters.

1 was tested containing only the r parameter which in this
parameters of the surface runoff

f the active catchment area (parameter ), more accurate

1 more precise Fig. 1 shows the comparison of the actual
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the observed precipitation and hydrographs. Optimization
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approximation. A priori it is difficult to preset a fitting criterion which the optimg,,
must achieve. The absolute minimum value either cannot be achieved at all with t,
initial data available or it requires too much computer time. The selection of gogq .
initial approximation of the parameters along with reasonable constraints on thej;
values obtained from physical concepts creates a reliable basis for optimization. Tp, }
successive model complication makes it possible to use as an initial approximatigy the |
values of the corresponding parameters from a simpler model. On introduction of the ’
next parameter all the parameters are optimized anew.

The structure of the fitting criterion is of great importance in determining the
parameters by optimization methods. A correct selection of this structure permits, o,
the one hand, an evaluation of how the basic physical laws (conservation laws) are ey
in the models, and on the other hand consideration of the different uses of the
available data under the conditions of a specific problem. In order that the paramete,
optimization take into account the diverse conditions in which each of the parametey
can play a considerable part it is desirable to calculate the fitting criterion on as Mmany
of the recorded floods as possible. However, the speed of modern computers makas
it possible to use only a few floods in optimizing the parameters of complicated mogy,
(we have used four to five floods). Therefore, it is necessary that the fitting criterion
includes, if possible, a great amount of information about each hydrograph even
though it is achieved at the expense of decreased accuracy of determination of some
parameters. Thus, for instance, the fitting criterion calculated as a mean-root-square
(standard) deviation of the calculated and actual volumes appears inapplicable to
sufficiently complicated models in spite of the fact that it allows the best evaluation
of the parameters which affect the runoff volume. This criterion results in a sharp
reduction of the information contained in the recorded hydrograph; all the ordinates
of the hydrograph are replaced by one value. However, an effort to make the fitting
criterion informative to the maximum extent can result in its increased sensitivity to
the errors found in the initial data. This, for example, is observed if the fitting criterio
takes into consideration the hydrograph time derivatives.

We have used in the main the following two fitting criteria:

K= i %UOT/ [Q¢}(T)—ij(r)]2dr}% (4
j=1 . .
- K ‘—fi % {fOTj ‘[Q(ij(T)‘—ij('r)]z Qgi(7) dT}VI - (15
i=1 B
where

Qg and Qp; are actual and calculated ordinates of the j-hydrograph;
Tjisits duration;

x; is the vector of parameters;

Vj is the runoff volume;

7 is the number of hydrographs.

The first yields rather smooth hydrographs due to the errors for high and low
discharges being similarly treated. The second criterion mainly attaches importanc® o
large discharges; however, it gives less consideration to the maintenance of volumes: -

In selecting an optimization method we tried to use a method which operates
well with both a large number of parameters and a complicated response surface 0
the objective function. Such a procedure has been developed at the Computer Cenl
of Moscow University to solve problems in the field of chemical technology (1’01)"‘c
and Skokov, 1967). This procedure can be used for successive minimization of

fitting criterion by the combined application of the univariate method with the
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